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Abstract—It is shown that holography offers a novel solution to
the problem of millimeter-wave power splitting and combining.
With the help of an approximate model, we demonstrate that a
hologram will work as a beam-splitting element, provided that it
records the holographic image of the beams to be generated. To
verify this observation, a beam splitter consisting of a hologram
and an antenna array is analyzed by means of a rigorous
network model. This analysis serves to find the optimum structure
of the beam splitter. Measurements on a realized prototype
of the beam splitter prove the possibility of achieving a high
splitting efficiency, a high inter-element isolation, and a relatively
large bandwidth. Flexibility in the orientation and the number
of outputs is another outstanding feature of this holographic
approach.

Index Terms—Holographic power dividers/combiners, holo-
graphic recording, millimeter-wave power dividers/combiners,
millimeter-wave technology.

I. INTRODUCTION

A SINGLE solid-state source for millimeter waves might
hardly meet the requirements concerning the power level

in many practical systems. This supports the idea of multi-
element configurations for the purpose of power combining.
The existing methods of power combining are assigned to
two categories:resonantand nonresonantapproaches [1]. In
resonant methods, the sources coherently inject their energies
into an eigenmode of a shielded [2], [3] or an open resonator
[4]–[6] while nonresonant methods are mainly based on spatial
combining of the energy radiated by an array of mutually
locked oscillators [7]–[9]. To avoid mode competition in the
former method and grating lobes in the latter method, the sin-
gle sources should be arranged within a spacing dictated by the
wavelength. (The distance between neighboring devices should
typically be equal to or less than half a wavelength.) Therefore,
at millimeter-wave frequencies, this requires a geometrically
small inter-element spacing or, rather, circuit miniaturization.
However, regarding the fact that solid-state millimeter-wave
sources usually possess a low power efficiency, the individual
sources should be equipped with heat sinks, which are as large
as several wavelengths, so that electrical and thermal demands
are normally in contradiction.

To overcome these shortcomings and to allow sufficient
geometrical spacing between the output (input) ports, we have
recently introduced a novel approach to power splitting (com-
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Fig. 1. Wavefront transformation with a hologram.

bining) by means of holography [10]. In this method, power
splitting is performed by acomputer-generatedhologram stor-
ing holographic images of a given number of electromagnetic
beams. Illumination of this hologram with an appropriate
input beam reconstructs the stored images coherently. In other
words, the introduced holographic method offers an elegant
way for splitting a beam into a set of coherent beams and vice
versa. Furthermore, since the recorded beams can arbitrarily
be oriented in the hologram, the spacing between them may
be chosen large enough to avoid the aforementioned problem
of miniaturization.

This paper reports on the operation principles, design,
and implementation of a millimeter-wave holographic power
splitter/combiner. Firstly, with the aid of an approximate
linear-system model, we discuss the operation principle of the
power splitter/combiner in Section II. Section III is devoted
to a rigorous analysis of a power splitter/combiner constituted
by a phase grating and a horn array. Implementation of the
power splitter/combiner along with the measurement results is
described in Section IV.

II. HOLOGRAPHY AND BEAM SPLITTING

This section deals with a simple optical model which
provides an insight into the process of holographic beam
splitting. To begin, consider the arrangement of Fig. 1, which
shows an input wave incident on a hologram. While traversing
the hologram, the incident wave undergoes a spatial ampli-
tude and/or phase modulation. Although more or less any
other optical element (e.g., a lens) also modulates its input

0018–9480/97$10.00 1997 IEEE
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wavefront, the modulation performed by a hologram relates
to an interference pattern recorded in it, which renders the
following distinguishing feature to this modulation. Assume
that the recorded pattern is formed by two or more interfering
wavefronts, and that it is stored in the transparency of the
hologram in a way to be explained later. In the case that
the input wave coincides with one of these waves, the wave
leaving the hologram carries information about the other ones
[11]–[13]. That is to say, the modulated wave can have some
predetermined properties provided that the hologram records
the right image. Let us see in a more quantitative manner how
this image should look.

Looking at Fig. 1, suppose that the input wave is known in
plane , and that it should be transformed into a desired
wave at plane . To formulate this process, we are to
follow the propagation of the input wave from plane
to plane . For the sake of simplicity, it is assumed that
both the structure and the excitation are-invariant, and that
the input wave is -polarized.

In the Cartesian coordinate system with , the
input wave can be considered as the superposition of a finite
or infinite number of plane waves (or space harmonics) [14]
according to

(1)

where determines the propagation direction
of the plane wave , the amplitude of which is

. Since these plane waves should satisfy
Maxwell’s equations, either or may vary independently,
while the other one is obtained from the relation
(with as the free-space propagation constant). Knowing

in the plane , and applying the inverse Fourier
transformation along with the Sommerfeld radiation condition
to (1), we can uniquely evaluate , i.e., the plane-wave
(or spatial-frequency) spectrum of the input wave. Once this
spectrum is known, the process of wave propagation will be
completely described by (1).

When the input wave has a paraxial propagation along the
-axis, its spatial-frequency spectrum is mainly concentrated

around , and relation (1) takes a simple form. This is
due to the fact that for , may be approximated by

(2)

Substituting (2) into (1) and expressing the field in the plane of
the hologram in terms of the known field distribution

, we obtain, after some straightforward steps, the
following:

(3)

with

(4)

Based on (3), alinear space-invariantsystem with the impulse
response models the paraxial propagation of the input
wave from the plane to the plane. This has been
shown in the block diagram of Fig. 1. It is worth mentioning
that (3) might be interpreted as another expression for the
Fresnel–Kirchhoff diffraction formula [15] in a form suitable
for a linear-system representation. As previously mentioned,
a hologram spatially modulates the wave incident on it. In
Fig. 1, this effect is modeled by a multiplier. The function

in this model represents the amplitudetransparency
of the hologram at point , so the field just behind it is
obtained from the product . If this field also
satisfies the conditions of paraxiality, one is allowed to model
its propagation from to with another linear
space-invariant system. The impulse response of this system,

, can be derived from (4) after replacing by . This
completes the development of the required linear system for
modeling the transformation done by the hologram.

Now we formulate the problem of beam splitting by finding
a realizable function for the transparency of the hologram
so that a given input beam will be transformed
into a number of desired beams through the diffraction at the
hologram.

Referring to the main characteristic of a hologram discussed
at the beginning of this section, we expect that the solution to
the above problem must be related to the interference pattern
of the input and the desired beams. More precisely, since
the beams to be generated specify in the model of
Fig. 1, the needed function should satisfy

(5)

which is an integral equation for the only unknown .
However, the transparency function evaluated in this way is
not always realizable. Even so, the solution of (5) does not
necessarily lead to a lossless beam splitter. As a matter of fact,
to synthesize a beam splitter of the highest possible efficiency,
the magnitude of should be unity since the systems
corresponding to and are lossless. This justifies
the necessity of a phase hologram for efficient beam splitting.

Another constraint on the function is again derived
from a case of practical interest, namely generation of a set of
equidistant identical output beams from a uniform input beam.
Such a set of beams requires the periodicity of .
Hence, we deduce from (5) that the function should also
be periodic with the same period as that of .

On the other hand, to guarantee the realizability of the
function the design procedure can be based on the syn-
thesis of a physical structure. To that end, a dielectric grating
seems to be an optimum choice in view of its lossless transfer
characteristic and the possibility to implement a periodic phase
modulation. Thus, the next section is devoted to a rigorous
analysis of a holographic beam splitter/combiner consisting of
a dielectric grating.

III. RIGOROUS FORMULATION

Fig. 2 illustrates the structure to be investigated. This two-
dimensional (2-D) arrangement involves, a horn array for
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Fig. 2. A dielectric phase grating along with a horn array for collecting
the output beams. An equivalent network of this structure is also seen in this
figure. The arrows show the propagation direction of various space harmonics.
Each transmission line in the equivalent network corresponds to one of the
space harmonics.

generation/collection of a number of electromagnetic beams,
and , a dielectric periodic structure operating as a phase
hologram. Our goal is to find an optimum design for the grating
so that the energy of a plane wave normal to the grating is
entirely collected by the horn array in a manner that all of the
horn antennas receive the same amount of power.

The periodic structure in Fig. 2 is a surface-relief grating
with a simple mechanical construction in which the optical
length and, consequently, the spatial phase shift varies as
a function of groove height. In this case, the information
recorded in the grating can be envisioned as the position-
dependent phase shift caused by varying groove height. The
same effect will be achieved if the refractive index of the
dielectric grating changes from point to point.

To suffice the constraints explained in the last section, the
period of the grating and that of the horn array are assumed
equal. This period is predetermined and can amount to several
wavelengths to allow for a large physical spacing among the
array ports.

The analysis of the structure in Fig. 2 can be reduced to
the analysis of an equivalent network when a plane wave
excites this configuration. Because any general excitation can
be expanded into a set of plane waves, the assumption of
plane-wave excitation does not restrict the generality of this
approach.

As far as the plane-wave excitation of the grating is con-
cerned, all the components of the scattered field can be
regarded as being pseudo-periodic functions.1 Since the set of
all space harmonics representing a pseudo-periodic function
is denumerable, one could utilize an equivalent network of
discrete transmission lines (like that seen in Fig. 2) to simulate
the propagation of these space harmonics.

1A function f(x) is called pseudo-periodic if there are someL and� for
which f(x+ L) = e�j�Lf (x).

Fig. 3. Network model for a binary phase grating.

The multiport networks and in Fig. 2
model the horn array and the grating, respectively. In the
following subsections, we will investigate these networks in
more detail.

A. Hologram

In order to develop a network model for the hologram, we
follow the approach proposed in [16]. The main steps of this
method have been summarized in what follows.

Note that by approximating the groove shape of a surface-
relief hologram with a staircase function, the hologram may
be imagined as a stack of dielectric periodic structures having
rectangular profiles. Thus, we first describe the network model
for the rectangular periodic structure depicted in Fig. 3.

Inside region of Fig. 3, which we will call the periodic
region, the relative permittivity varies periodically. As a con-
sequence, we may uniquely expand the relative permittivity
of this region as

(6)

To account for dielectric losses, complex values are assigned to
the function . On the other hand, if the grating is excited
by the plane wave with ,
the total field (i.e., the sum of the scattered and the incident
field) will be pseudo-periodic. Thus, for the assumed incident
polarization, the total field is a wave with the following
tangential components:

(7)

(8)

where . Substitution of (6)–(8) in
Maxwell’s equations leads to the succeeding matrix relation
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Fig. 4. Network model for the horn array.

for the unknown coefficients of (7) and (8):

(9)

(10)

with

(11)

and . As can be implied from (9) and (10), the
coefficients of the space harmonics obey the laws of propaga-
tion along a multiconductor transmission line if
is considered as the voltage–current pair of theth transmis-
sion line. In the periodic region, these transmission lines are
mutually coupled on account of the nondiagonal elements of

; while in a homogeneous region, like region, , or
of Fig. 3, the matrix is diagonal, and the transmission

lines are isolated from each other.
If the matrix is diagonalized (i.e., if one finds a

diagonal matrix and a similarity transformation such
that ), the transmission lines representing
the periodic region will also be decoupled. Fig. 3 demonstrates
the equivalent network of the hologram in its final form.
Here the diagonalization procedure has been modeled by
transformers and , which correspond to and ,
respectively. Not to mention that the network model of any
arbitrary surface-relief grating can be obtained by cascading
the equivalent networks of the various layers appearing in the
staircase approximation of the groove shape.

B. Horn Array

Fig. 4 illustrates a single period of the horn array as well as a
multiport network describing the energy exchange between the
eigenmodes of the input waveguide and the space harmonics in

region . The modes inside the waveguide, i.e., in region
, contribute to the following tangential field components in

the plane :

(12)

(13)

where and represent the amplitude of the incident and
reflected mode in the plane, respectively.

with and
is the admittance of the mode.

Inside the sectoral horn, the -field component is expanded
in terms of the Hankel functions of the first and second kind as

(14)

with . and
are the unknown expansion coefficients to be determined. One
may obtain the field components and from (14) and
Maxwell’s equations, i.e.,

(15)

(16)

The above field components are projected into the plane
to yield the tangential magnetic field :

(17)

Suppose that the incident waves are given. Equating (12)
to (14) and (13) to (17) for and , we find2 two
infinite systems of equations for the three unknown vectors

, , and .
Two other infinite systems of equations may be obtained

from the boundary conditions in the plane , i.e., in
the aperture of the horn array. To that end, (14) and (17)—after
replacing by —are used to specify the
tangential field components in the plane . On the
other hand, the most general form of the tangential field in
region just above the aperture reads

(18)

(19)

where and denote the amplitude of theth outgoing and
incoming space harmonic, respectively. The admittanceis
given by and equals the characteristic
admittance of the transmission line corresponding to theth

2To equate these equations, we equate their moments with respect to an
appropriate set of weighting functions defined onjxj < a=2.
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Fig. 5. Power-splitting efficiency for a rectangular grating as a function of
the normalized period. Optimum grating distance and horn length are also
seen in this diagram.

space harmonic. By matching (18) and (19) to the aperture field
of the horn, one arrives at the two needed infinite systems of
equations for , , , and .

After elimination of and in the above four infinite
systems of equations, the complete description of the network

shows the following form:

(20)

This is a chain orABCD matrix representation for linking the
eigenmodes of the input waveguide with the space harmonics
in region .

Since the submatrices , , , and have infinite di-
mensions, they should be truncated prior to any numerical
computation. At this stage, the edge conditions for and

dictate the allowable and ratios in
the truncated versions of (12)–(19).

C. Design Procedure

In order to design a phase grating that efficiently transforms
a normal incident plane wave into an array of electromagnetic
beams, we investigate the reciprocal case. In other words,
we excite the antennas of Fig. 2 uniformly, and attempt to
maximize the power of the zeroth space harmonic. (Note that
the zeroth space harmonic corresponds to a plane wave leaving
the phase grating perpendicularly.) Thus, for a computer-aided
design (CAD) of the beam splitter, we choose the energy of
this space harmonic as object function. Later, in an iterative
trial-and-error procedure, the parameters of the grating are
varied according to an optimization strategy, until the energy
of the zeroth space harmonic is maximized. Application of the
equivalent network of the last two subsections facilitates the
above design process considerably.

Regarding the fact that the spacing between the input ports
(i.e., the period of the structure in Fig. 2) is predetermined,
the optimum design of the beam splitter should be attained
by varying the groove shape and the position of the phase
grating as well as the length of the horn antennas. It has been

Fig. 6. Realization of a holographic beam splitter in parallel-plate technique.

found that the optimum groove shape tends to be rectangular.
Typical values of the achieved power-splitting efficiency for a
rectangular groove shape are shown in Fig. 5. As can be seen,
the achieved efficiencies are higher than 97%, even for an
inter-element spacing of several wavelengths, which is a proof
for the scalability of this method up to very high frequencies
of millimeter and submillimeter waves.

IV. I MPLEMENTATION AND MEASUREMENTS

The introduced holographic approach has been implemented
at 24 GHz in parallel-plate waveguide technique in accordance
with the arrangement of Fig. 6. It consists of a dielectric
phase grating as a hologram, a horn array for collecting
the output beams, and a setup to generate a readout beam
for reading the images recorded in the hologram. Owing
to the propagation properties of the fundamental mode in a
parallel-plate waveguide, the configuration of Fig. 6 exhibits
the required characteristics for realizing the 2-D structure of
Fig. 2.

The hologram has been designed with the help of the method
discussed in the last section. Its period and, consequently,
the spacing between adjacent outputs amounts to 80 mm

. It possesses a rectangular groove shape of 4.7-mm
height, and is made out of Teflon, which shows relatively
low losses at millimeter-wave frequencies. An ordinary milling
machine has been utilized for fabricating the hologram.

To characterize the combination of the hologram and the
horn array, we have measured the input scattering parameter

for the center horn. (This measurement has been done in
the absence of the reflector and the aperture stop to minimize
the unwanted reflections.) In fact, the scattering parameter

contains information not only about the diffraction at
the grating, but also about the scattering centers of the horn,
like its edges. Therefore, a comparison between the measured
and simulated represents a valuable verification for the
numerical simulation of Section III. The reflection and
the mutual coupling between two neighboring horns
measured with an HP 8510C network analyzer are seen in
Figs. 7 and 8, respectively. These results not only verify our
computation (dot–dashed curves), but also indicate a return
loss of better than 15 dB and an isolation of higher than 25 dB
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Fig. 7. Measured (—) and computed (��) reflection.

Fig. 8. Measured (—) and computed (��) mutual coupling.

over a bandwidth of more than 15%. The slight deviation of the
measured values from the simulated ones is probably caused
by the ohmic losses on the walls of the horn antennas. The
simulated electric-field distribution inside the beam splitter for
the case where only the center horn is excited is shown in
Fig. 9.

To generate a beam for reconstruction of the stored images
in the hologram, the setup of Fig. 6 involves a feed horn,
an offset reflector, and an aperture stop. The offset reflector
having a length of is illuminated by the feed horn and
provides a nearly Gaussian beam as shown in Fig. 10. This
figure illustrates the measured field intensity at the position
of the aperture stop when this and the other components are
absent. The field intensity evaluated by using the method of
moments is also shown in Fig. 10.

For an equi-power reconstruction of the recorded images,
the hologram should be excited with a uniform (flat-top) beam.
In Fig. 6, the -wide aperture stop passes a portion of the
Gaussian beam and flattens the field profile.

The normalized field intensity measured in a short distance
behind the aperture stop as well as the simulation of the stop

Fig. 9. Simulated field distribution inside the beam splitter. Only the middle
horn is excited. The scale bar shows the magnitude of the electric field in
decibels (H: Position of the hologram).

Fig. 10. Nearly Gaussian beam reflected from the reflector. Measured (—)
and computed (��).

by the method of moments are seen in Fig. 11. It should be
noted that the applied procedure of beam equalizing is not an
efficient one and shows an efficiency of only 70%. For a more
efficient beam equalization, one can use lens-like refractive
components [17], improve the feed system of the reflector, or
modify the shape of the reflector [18].

Fig. 12 depicts the measured field intensity in the aperture
of the horn array when the horn array is removed. It can clearly
be seen that the hologram has recovered the recorded beams.
Note the excellent agreement between the measured values
and those computed by the method of Section III. See Fig. 13
for the simulated electric-field distribution in response to a
Gaussian input beam. Three reconstructed beams and some
higher diffraction orders are readily recognized in this figure.

The transmission characteristic between the feed horn and
each output horn has been measured using an HP 8510C
network analyzer. The result seen in Fig. 14 shows an overall
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Fig. 11. Beam equalized by the aperture stop. Measured (—) and computed
(��).

Fig. 12. Reconstruction of the three beams stored in the hologram. Measured
(—) and computed (��).

transmission of 8 0.5 dB for all outputs. Owing to the
limited efficiency of the beam-equalizing stop and regarding
the ohmic losses in the parallel-plate waveguide, the measured
power of the beam incident on the hologram is about 50%
of the total input power, so an overall transmission of8

0.5 dB indicates that 93% of the power incident on the
hologram has been received by the output horns. In the case
where the hologram is removed, the power received by the
array diminishes to only 25%.

The ripples observed in the frequency response of Fig. 14
are caused by multiple reflections between the reflector and
the aperture stop, and will vanish by replacing the stop with a
matched refractive beam equalizer like that proposed in [17].

V. COMPARISON WITH FRAUNHOFER HOLOGRAMS

A method comparable with the method of this paper is
wavefront transformation by means of Fraunhofer holograms.
In this section, we intend to point out the main differences
between these two approaches.

Fig. 13. Electric-field distribution in the vicinity of the hologram and the
stop (H: Hologram.S: Stop.A, B, C: Output beams).

Fig. 14. Overall transmission characteristic for each output.

As mentioned in Section II, the problem to be solved by
the method of this paper is concerned with a wavefront
transformation within the domain of Fresnel diffraction or
equivalently in the near-field zone of a diffraction grating.
The problem of wavefront transformation can also be posed
for the far field. In this case, an incident wavefront should
be transformed to a defined wavefront at infinity. This prob-
lem has gained attention in optics. To our knowledge, the
early works by Lohmann [19] on the subject of wavefront
reconstruction in the far-field zone of a binary hologram
were the starting point for the development of other useful
holographic optical elements for multiple imaging [20], [21]
and beam addition [22], [23]. The basic element in all of
these applications is a computer-generated hologram which
transforms an incident plane wave into a number of equi-power
space harmonics—known as Dammann grating. Evidently, a
Dammann grating can be exploited as a beam splitter only in
the far-field region. However, due to the fact that the period of
a Dammann grating amounts to several wavelengths, at typical
millimeter-wave frequencies the far-field region of this grating
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exceeds several meters, so the above method is not practicable
for millimeter waves unless additional optical components like
Fourier transform lenses are added to its configuration [24].
In contrast to that, the method of this paper excludes any
additional component and, therefore, maintains a very low
splitting/combining loss.

Another notable advantage of a Fresnel beam-splitting holo-
gram over its Fraunhofer counterpart is a higher achievable
bandwidth. This may be justified by the reason that the
propagation directions of the space harmonics produced by a
Dammann grating obviously depend on the working frequency,
which influences the coupling into the output ports and renders
the transmission characteristic narrow-band.

Finally, note that the number of input/output ports for a
Dammann grating cannot be changed without redesigning the
grating, whereas this number in the introduced method is
determined only by the number of periods.

VI. CONCLUSION

A holographic power splitter/combiner has been presented
in this paper. It is capable of becoming a favorite candidate
for millimeter and submillimeter-wave applications because of
its high efficiency, broad-band character, high isolation, and
flexibility in both orientation and number of outputs.
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